Question 6

2010 HSC₁Mathematics

Band 5/6 Sample 1

Sample 1 Start here for Question Number: 6 ai) $f(x) = (x+2)(x^2+4)$ $= x^3 + 2x^2 + 4x + 8$ $f'(x) = 3x^2 + 4x + 4$ $\Delta = b^2 - 4ac$ $= 4^2 - 4(3)(4)$ = 16 - 48 = -32 . y=f(x) has no stationary points. atil) find POIs (points of inflexion) f''(x) = 6x + 4 $\begin{array}{rcl}
0 &= & 6x + 4 \\
6x &= & -4
\end{array}$ X: - 2 f''(0) = 6(0) + 4= 4 > 0 = . concave upf''(-1) = -6 + 4= -2 < 0 .. concave down -iy = f(x) is concave up when $x < -\frac{3}{3}$ y = f(x) is concave down when $x < -\frac{3}{3}$

Question 6	2010 HSC Mathematics	Band 5/6 Sample 1
	14	
λ ⁱⁱⁱ)	g = f(x)	
	1	
	POI	
6	2	>x
~		
	\checkmark	
0 = £	B2+42-8	
O = (z)	$c+2(x^{2}+4)$	
x = -	2, -2,2	
i i i i i i i i i i i i i i i i i i i		
$\overline{b}i)/z \theta r$		
$q = \theta \times q$	5	
	= 1.8°	
bii) $\ln \Delta$	opt and Δoqt :	
1 ODT	T is common = LOQT=90°(given)	
OP	- COULI-10 (given)	lii of the same ci
UT .	e Ula (both rad	111 OF THE SAME CI
		ting space on back page.

Question 6

2010 HSC Mathematics

6111) by Bretole: (PTO = TT-(=+0.9) = 0.67° by sine rule : PT $\frac{PI}{\sin 0.9^\circ} = \frac{5}{\sin 0.67^\circ}$ $PT = 5 \sin 0.9^{\circ}$ sin0.67° PT = 6.3 cm biv) Area = 2× × × 5×6·3× sin 90° - 4 18×5 = 31.5 - 4.5= 27cm² You may ask for an extra Writing Booklet if you need more space to answer question 6.