Start here for Question Number: 6

b. a)
$$f(x) = (x+2)(x^2+4)$$

$$f'(x) = 3x^{2} + 2(2x) + 4$$

$$= 3x^{2} + 4x + 4$$

$$0 = 3x^2 + 4x + 4$$

$$\begin{cases}
ac = 12 \\
b = 4
\end{cases}$$

Carnot factorise.

(ii)
$$4''(x) = 3(2x) + 4$$

= $6x + 4$
= $2(3x + 2)$
= $3x + 2$

$$3x+2>0$$

$$3x>-2$$

$$x>-2$$

$$3x + 2 < 0$$
 $3x < -2$
 $x < -\frac{1}{3}$

:. graph is concave up for

 $X < -\frac{2}{7}$

graph is concare down for

x>-2

(ii) $y = (x+2)(x^2+4)$ 3 $= (x+2)(x^2+8)$ =)(+ 4)(+ 2 x

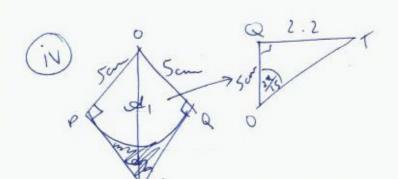
0= x3 + 2x + 2x + 8,

$$y = (0)^3 + 4(0) + 2(0)^2 + 8$$

-) X-cuts:

 $x = -2 + x = (x \neq \sqrt{-4})$

1 / (x) = (x+2)(x2+4)


Additional writing space on back page.

$$0 = \frac{9}{5} = \frac{48\pi}{180} = \frac{4\pi}{15}$$

$$tan \frac{2T}{15} = \frac{opp}{adj}$$

$$= \frac{pT}{5}$$

$$3 = \frac{1.2}{2}$$

$$= \frac{2.2 \times 5}{2}$$

$$= 5.5$$

You may ask for an extra Writing Booklet if you need more space to answer question 6.

magles is 11cm² (= d2)
(= d2)

$$= \frac{1}{2}(5^2)\frac{2\pi}{15}$$

=
$$\frac{5\pi}{3}$$
 : we of sector is $\frac{5\pi}{3}$ and $\frac{5\pi}{3}$