Start here for Question Number: 6

a) (i)
$$f(x) = (x+2)(x^2 + 4)$$

 $f'(x) = 3x^2 + 4 + 4x$
 $= 3x^2 + 4x + 4$.
 $= 3x^2 + 4x + 4$.

:. No possible stationary points, as;

$$2 = -b \pm \sqrt{b^2 - 4a}$$

$$= -(4) \pm \sqrt{16 - 4(3)(4)}$$

$$= -4 \pm \sqrt{-32}$$
6

.. No stationary points exist on the curve.

(ii)
$$y = f(x)$$

 $y' = 3x^2 + 4 + 4x$
 $y'' = 6x + 4$
 $6x = -4$
 $x = -\frac{2}{3}$

:. When $x > -\frac{2}{3}$ the graph concave down, and $x < -\frac{2}{3}$ the graph is concave up.

$$3-int = 3x^2 - 4x + 4$$

= $x(3x+1) + 4$

$$\theta = \frac{9}{5} \times \frac{\pi}{48}$$

(ii) In AOPT and AORT:

$$\tan \left(\frac{9\pi p}{5}\right) = \frac{pT}{5}$$

$$\tan \left(\frac{9\pi p}{5}\right) = \frac{pT}{5}$$

PT is 6.5 cm

Additional writing space on back page.

= area of sector

Herce,

Arrea of kite:

$$\frac{1}{2} \times 4 \times 7$$

$$= \frac{1}{2} \times 8.2 \times 7$$

$$= 4.1x$$