Start here for Question Number: 3

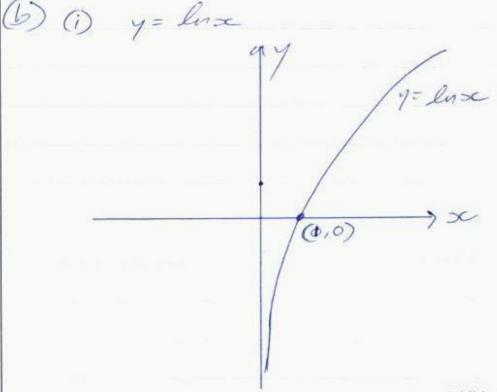
$$= \left(\frac{-2+12}{2}, \frac{-4+6}{2}\right)$$

(ii) Coordinat of BC =
$$\frac{72-7}{x_5-x_1}$$

= $\frac{8-6}{6-12}$
= $\frac{2}{-6}$
-'. gradient = $-\frac{1}{3}$

(iii) DABC B similar to
$$\triangle AMN$$

$$\frac{2-5}{2-5} = \frac{1}{3}$$
© LCAB = $\triangle NAM$ (common angle)


B gradient of BC = gradient of $MN = -\frac{1}{3}$

(iv)
$$M(s,1)$$
, $N(2,2)$, gradient $-\frac{1}{3}$
 $y-y$, = $m(x-x)$
 $y-1=-\frac{1}{3}(x-8)$
 $3y-8=-x+5$
 $x+3y-8=0$ equatron for MN

(v) length
$$ABC$$

$$ABC = (4,8) \\
= (6-12)^2 + (8-6)^2 \\
= \sqrt{66}^2 + (2)^2 \\
= \sqrt{36+4}$$
B(12,6) C(6,8)

(vi) Area of
$$0.48C = 44 \text{ units}^{2}$$

.'. A Area = $\frac{1}{2} \times 6 \times h$
 $44 = \frac{1}{2} \times 6 \times h$ (where $6 = \sqrt{40}$)
 $44 = \frac{1}{2} \times 40 \times h$ (= $\frac{1}{2}$)
 $88 = 40h$
.'. $h = \frac{88}{40}$

Additional writing space on back page.

oven.

(ii) 3 ln x &x trop rub: trop doe
(ii) $\int_{1}^{3} \ln x dx$ trop nb : $\int_{1}^{b} f(x) dx$ $= \frac{ab}{2} \left[(y_{0} + y_{n}) + 2(y_{1} + y_{0}) \right] + 2(y_{2} + y_{0}) + 2(y_{2} + y_{0}) + 2(y_{2} + y_{0}) + 2(y_{1} + y_{0}) \right] + 2(y_{1} + y_{0}) = \frac{b-a}{n-2} $ $= \frac{1}{2} \left[(0 + \ln 3) + 2(\ln 2 + \ln 2) \right] = \frac{3-1}{2}$ $= \frac{1}{2} \left[(\ln 3) + 4 \ln 2 \right]$
$=\frac{1}{2}\left[(6+\ln 3)+2(\ln 2+\ln 2)\right]=\frac{3-1}{2}$
= 2[Cln3+) + 4ln2] = 1
= 1.936 . (36.p.)
(iii) The value from port(ii) is greater
then the exact value because by using the trapezoidal rate, the value given is only
an approximation and there is a margin of error when compared to the exact

You may ask for an extra Writing Booklet if you need more space to answer question 3.