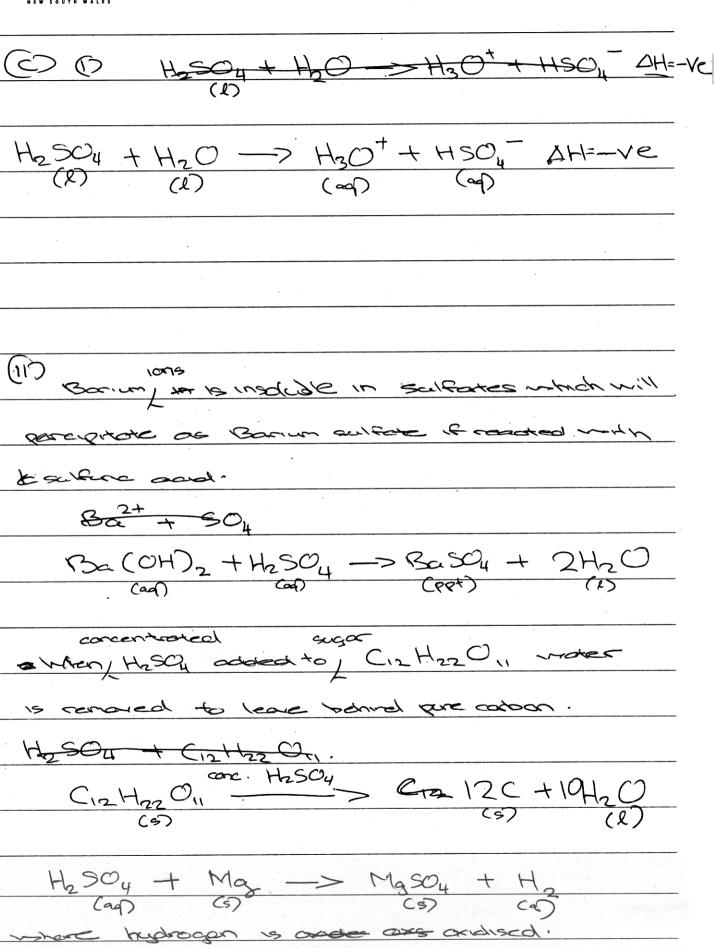


Question 28.
a)(1) Saponistection is the hydralysis in basic saluton
of fath and oil to produce glyand and he salt of
butty aich.
(ii) The cleaning action of surp can be related to this
Moledon structure. Dirt is non rolar, greeze contains consulti
of a large chain of non-polar hydrocations. We Have water
is polar and it does not dissalue this non-polar great and
dirt.
Soap contain falty aid amons, which have a non-relar tail consisting
of hydrachers a din of hydrocutons, and a polar anioic
head. The non-paler but is hydrytohic and the asson Advan
head is hydrophllic.
Non robo gene molecula tella from chellis one rented care at the gim. Sign gene notes
tagether and not of one match from the charge pages song
tasets form an emission, with ne was acting a destiner. Surporty
pe normally incomplete sett greas in water


(b)	K = [503]2	moles (2) (9)	+ 0,000 =	$\geq 250_{3(9)}$
	[50,] [0,]	equilibrium 0-06	0.05	0.04
		0-02	0-03	0.04

@ equil	librium: K = [0-04]	1
	[0.02] x [0.03]	

$$= \left[0.04\right]^{2}$$

$$1.2\times10^{-5}$$

d. Fe3+ + SCN - FeSCN2- + neat
i. we placed Fe3+ + SCN- in & 5 test
tubes, and petormed different procedures
A - control
B - we added Fe ³¹
c - we odded scn-
D - we heated it
E - we cooled is,
Then we observed what happened, and
compared it with the equilibrium.
ii Fe 3+ SCN ay & FeSCN (an) + Leat.
- The control experiment was a light boun
0010UCS
- when we odd fe3+ , + mode the equilibrium
Shift to the right to use it up. This was
seen by the tube going dorker as Fesch
is a de-K substance. The same hoppened
when we added son as this has

the same effect on equilibrium
- Due to it being on exothermic reactor
when we hanted it it, shifted to the left
to the temp, resulting in a lighter relour.
-when we put ice on it the equilibrium
Shifted to the right to obsorb heat Meto
counterect the imposed change As a
result turning a much dorker colour.
this was all ave to le chaliters principle,

produce sodium cell usid hydroxide was to merany used liquid graphite anode placed relatively Atanium large current The sodium produce inth amalgan chamber sodium hydroxide the where water chlorine oxidised was collected The Tronium 1 (2 cg) + 2e Nation te -> Nam Chabbile anoge 2Naw + 2H2Ou, -2Nathag, + H2cg) Brine -> Depleted Hg -> steel ade Hg PUMP and environmental issues arose. The marcuny However, technical was theoretically supposed be recycled was found to contaminate produced, leading to environmental concerns heavy metal that occumulater in the body and

brain damage. This led to the development of the diaphragm cell.
The diaphragm cell uses a titanium anode and steel
mesh cathode, with an asbostos diaphragm separating the dechodes.
The bine parsos by the diag titatium ande where chlorine
is oxidised; then through the diaphragm and cathode where
water is reduced, reacting with sodium to form sodium hydroxide. Cl2 45 Anode 20- (ag) + 42 (g) + 2e
diaphragm 2H, Ohn + 2e - 7 Hz/gy + 20H Tag
steel mesh Nation + Ott (ag) > NoOH(ag)
Depleted brine NaOH
However, the bisse produced was contaminated with chlorine
and the askestos diaphragm was found to be harmful
to humans. Thus further developments and away
advancements in technology led to the membrane cell.
The membrane cell uses a teflon membrane that
is permeable to only radium ions. An A titanium
anode and deel mesh cathode are used, with the
membrane separating the two electrodes.

BOARD OF STUDIES		
	- I -	
uz < T		- A,
Depleted .	Na	
		9
Brine >	a-5, CON	1- NOOH
T	tanium anode membrane	Steel mesh
201009) -> a2691		
240111 +20-> Hz		
Natage + OH (ng) -	> NaOH(aq)	
Thus t	he fechnical and	ehmonmental concerns
sumunding	the other two	cells: mercury and diaphrage
as well	as the industrial	demand for a pure
i .		levelopment of the membrane
		relatively pure NaOH, further
1		westific understanding may
lead to	more changes to	the method in the fiture.
-		