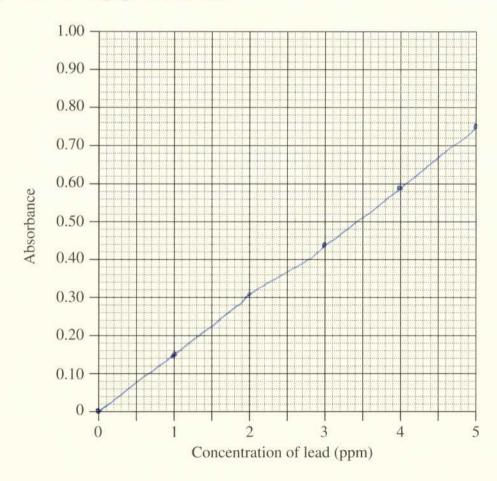
2001 HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

Section I – Part B (continued)


	Marks
Question 25 (6 marks)	
Explain the need for monitoring the products of a chemical reaction such as combustion.	6
when need to monitor themical compostion	١.
because so that way we can mointor only	
porting hazards. Like toxic gases. That	
my be har jardes or harmful for humans.	
Also we need to mointor the reaction	
carefully so that way it doesn't get out	
of our hands. So if it does it can be	
easily estingushed without firming the	
whole place down.	

Question 26 (4 marks)

A university student decided to measure the concentration of lead (Pb) in the soil around his home. He prepared five standard lead solutions of known concentration. The absorbance of these solutions was measured. These results are shown in the table.

Concentration of lead standard (ppm)	Absorbance
0	0.00
1	0.15
2	0.31
3	0.44
4	0.59
5	0.75

(a) Draw a line graph of these data.

Question 26 continues on page 23

1

1

Question 26 (continued)

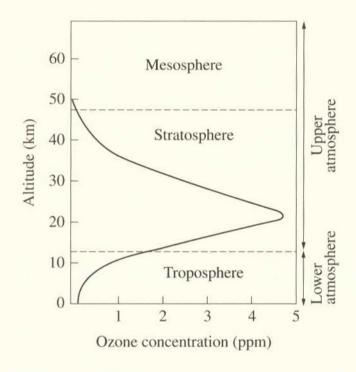
(b) The student prepared solutions from four different soil samples around his home. These solutions were also analysed using the same method. The results are shown in the table.

Area sampled	Absorbance
Front garden bed	0.19
Back garden bed	0.09
Mail box	0.22
Back fence	0.11

Determine the highest concentration of lead in the soil around the home.

Back englished Mars Lose

(c)	State an hypothesis to account for the variation in lead concentration around the student's home.	2
	Mand box will have the his hest consent	rikey
	Col-tract orand the house for that it	
	soil has the higest level of obsorbance.	


End of Question 26

Please turn over

Question 27 (4 marks)

Oxygen exists in the atmosphere as the allotropes oxygen and ozone. The graph shows a typical change in ozone concentration with changing altitude.

4

Compare the environmental effects of the presence of ozone in the upper and lower atmosphere.

ozone concentration increase in the L	over atmosphere
(Troposphere), as it reaches its optim	
it starts decrease as altitude increa	
In other words, as altitude increa	ses oxygen
decreases.	