

Start here.					
<u>a)</u>	Trisonomy	Polyploidy	Base substitution		
description	An extra	An extra pair	The mutation		
5	on	or multiple	of the		
-	any Chromosene	extra pairs	forming of		
	e.g. Ottra on	of chromosomes	a protein or		
Scrip	chromosome	e.g. wheat	creation of		
Des	21 causes	hybrids.	stop codon		
	down syndione)	by incorrect		
	J		translation or		
			transcription.		
(No affect to	One or more	No affect to		
400	chromosomal	extra pairs	chromosomal		
chrom	numbers,	of chromosomes			
350	mutation within		mutation		
	chromosome	chromosomal	within		
		numbers	chromosome		

C) i Limb defect	15	reces	sive	and				
vision defect								
ii E - eye defe	€ - eye defect L - normal							
· ·	e - Anormal 1 - limb defect							
Linked Genes EeLi								
M/ EL el 25% limb defect only								
EL EELL Eeli 75% vision defect only								
en Eel een 3:1								
Not-linked genes Eeli								
	J			* 7	,			
	MING	٤	e	L	\			
	٤	٤٤.	Ee	ک کے	٤١.			
	e	Ee.	وو	eL	e1.			
	L	و لـ	ek	LL	L1-			
31.25% Vision only		٤١٠	e1.	LI	11-			
18.75% limb only								
12.5% both defects	5	5:3	· 2 ·	6				
12.5% both defects 37.5% no defect		,						
,					,			
You ma	y ask for ar	n extra Writi	ng Booklet	if you need	more space.			

Start here. when genes are closer together chromosome they are more be linked as the likeliness being seperated during mejosis is low. To collect data examine these findings scientists radioactive due onto are believed linked and track their position meiosis and 0~ Chromosome. human genome achieved be DY linkage maps primarily because human breeding would mean a be put into place unpractical. is unethical and secondly, linkage maps take decades construct and the program would have shorter period of achieved ofhe (by using processes. Liankage maps accurate or veliable es always as methods to study genon

Many new technologies have from our understanding cascades. of a single gene has been aid medicine in its for cures to various illnesses enabled diabetics insulin rather than insulin, and develop into completely alsobeen loning improve agriculture species SUCH cotton and corn Both the case of the Belgian cow selective breeding they value and mcrease The development Additional writing space on back page.

further technologies in agricultur achieved by understanding of gene cascades. cloning understanding horough Dolly ue first clone and create her rate C S understanding today, scientists are experiment 40 adreate 9 HOX manipulated gene create arms You may ask for an extra Writing Booklet if you need more space.

Start here. position where wings should be.
This experimentation and deepening
understanding is a hint at the
future technologies which may
develop through our understanding
of gene cloning and gene
cascades.
Many New technologies are developing
as a result of our understanding of
gene cloning and gene cascades and
as these understanding deepens,
the technologies available will
increase.